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Foreword 
 

 

 

 

The present report was prepared within the context of the work package WP2 (‘High 

resolution scenario-based spatial zonation’) of the FOOTPRINT project (http://www.eu-

footprint.org). 

 

Data have been provided through the PRUDENCE data archive, funded by the EU through 

contract EVk2-CT2001-00132. Data are available for download from http://prudence.dmi.dk/. 

The CRU dataset TS 2.0 was made available by Dr David Viner of the Climatic Research 

Unit, University of East Anglia. The European Climate Assessment Dataset is available from 

http://eca.knmi.nl/. 

 

The preferred reference to the present document is as follows: 

Blenkinsop S., Fowler H.J., Burton, A., Nolan B.T., Surdyk N. & Dubus I.G. (2006). 

Representative climatic records. Report DL9 of the FP6 EU-funded FOOTPRINT project 

[www.eu-footprint.org], 59p. 
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Executive summary 
 

 

The aims of the work reported in this deliverable were to i) undertake a climatic zonation of 
Europe; and, ii) define climatic scenarios which will be subsequently used for modelling the 
environmental fate of pesticides within the context of FOOTPRINT. 
 
Extensive modelling was first undertaken to simulate the fate of various pesticides in different 
soils under different climatic conditions. Univariate and multivariate statistics were then used 
to relate predicted pesticide losses to climatic characteristics in order to identify the key 
climatic factors influencing pesticide fate.  A total of eight climatic variables were selected on 
the basis of these investigations and a climatic classification for Europe was constructed using 
these objective criteria.  This involved using a data reduction method to identify the main 
patterns of variability from the selected variables.  The main patterns were then used in a 
clustering routine to group areas with similar characteristics.  One of the difficulties in the 
work was to decide on an appropriate number of climatic zones given the need to identify 
distinct climates and yet produce a manageable number of zones for subsequent within-zone 
modelling.  This balance was achieved through the production of a classification of 16 regions 
(the ‘FOOTPRINT climatic zones’) which are physically plausible in terms of the input 
variables and of knowledge of the European climate. Representative climate series were 
selected for each of the 16 FOOTPRINT climatic zones using an objective method which was 
able to identify stations which were most typical of each climatic zone. 
 
The approach represents a major scientific improvement over earlier methods which rely on 
the subjective selection and combination of climate statistics.  The FOOTPRINT climatic 
zones which cover the EU25 and the candidate countries will form the basis of subsequent 
modelling activities within the project. 

 
The 16 FOOTPRINT climatic zones 
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1 INTRODUCTION: REVIEW OF CLIMATE CLASSIFICATIONS 
 

The classification of climate has been defined as the grouping of conditions for 

locations which show similar conditions defined by boundaries applied to one or 

more meteorological element (Essenwanger, 2001).  The earliest noted attempt at 

climate classification was made by the Greek scholar Aristotle who hypothesized that 

the earth was divided into three types of climatic zones, each based on distance from 

the equator.  These zones were termed “Torrid”, “Temperate” and “Frigid”.  The 

tradition of geography as a descriptive discipline concerned with such classification 

of natural environments persisted into the 20th century.  The most well-known and 

most widely reproduced global climatic classification was that of Köppen who 

published his first global classification in 1918, with a revised forms published 

subsequently (Köppen & Geiger, 1928, 1936; Figure 1).  This system of classification 

was updated and modified until Köppen’s death and it has since been modified by 

several geographers e.g. Strahler (1963), Walter & Leith (1960).  The classification is 

based on average annual and monthly precipitation and average monthly temperature, 

and comprises six major climate regions, with the European climate divided between 

Mild-Mid-latitude, Severe Mid-latitude and Highland Types.  Each of the 6 regions 

may however be divided into further sub-regions; typically 24 sub-categories based 

on temperature and precipitation.  An attempt was made by Thran & Broekhuizen 

(1965) to adapt the Köppen classification to a specific application by emphasising the 

time of year when assessing climate data.  They viewed winter data as not relevant 

for the pest problems of spring crops and so created an agro-climatic classification 

based on only important phenological periods, thus describing 76 sub-areas within 

Europe.  A simplified version of this scheme is shown in Figure 2. 

 

Climate classifications are still used and developed for the application of current 

problems.  Guttman (1993) applied classification methods to US precipitation, using 

cluster analysis to define 104 regions as part of a national study of water 

management.  Wang & Overland (2004) used the Köppen classification as a means of 

assessing Arctic climate change by examining trends in the coverage of the tundra 

group of climates.  Within the discipline of climatology however, the classification of 

climate is largely concerned not with the regionalisation of surface climate, but with 

that of atmospheric circulation, in the identification of an objective means of 

summarising daily circulation patterns (e.g. Jones et al., 1993) or in the application of 

statistical downscaling (e.g. Goodess & Palutikof, 1998) or in the assessment of 

climate model output (e.g. Huth, 2000). 



FOOTPRINT deliverable DL9   

- Page 7 -  

 

 

Figure 1.   The global climatic classification of Köppen & Geiger (1936). 

 

 

Figure 2.   The agro-climatic classification of Thran & Broekhuizen (1965). 

 



FOOTPRINT deliverable DL9   

- Page 8 -  

 

The classification of European climates has recently been most widely employed in 

ecological applications.  Bunce et al. (1996a) indicate that traditionally, in this field, 

such classifications are primarily intended for mapping purposes and are based on 

field sampling of habitats which are described from samples located subjectively.  

Quantitative procedures have largely been ignored because intuitive methods are 

more easily applied.  They describe an objective statistical method for classifying the 

ecology of Great Britain using climatic, topographical, human and geological 

parameters using a procedure described in Bunce et al. (1996b).  Hossell et al. (2003) 

also produced a bioclimatic classification of Britain and Ireland for use in examining 

the effects of climate change on natural habitats.  The three-stage procedure involved 

the selection of 89 relevant variables, principal components analysis to reduce the 

dimensionality of the data, and finally a hierarchical clustering method to determine 

the final classification of 21 bioclimate types. 

 

Bouma (2005) noted that climatic conditions are important for the speed of growth of 

plants and for crop safety before, during and after the application of agrochemicals.  

A European classification of agro-climatic zones for crop efficacy and safety was 

therefore devised.  Identifying the main conditions which are important for this 

application, the classifications of Köppen & Geiger (1928), and others discussed 

above, were used to subjectively identify 4 large agro-climatic zones which they 

termed Mediterranean, Maritime, North-east and Central (Figure 3).  Metzger et al. 

(2005) undertook a more substantial objective classification of Europe with the aim of 

providing a resource to aid the sampling and modelling of ecological resources.  They 

used 20 key climatic variables which were selected on the basis of past experience 

and used principal components analysis to identify the dominant modes of variability.  

An ISODATA clustering algorithm was then used to identify 84 strata which were 

subsequently aggregated into 13 Environmental Zones across Europe.  Jongman et al. 

(2006) indicated that such a stratified approach would aid the monitoring of 

biodiversity and habitats by enabling the determination of convenient units.  They 

demonstrated further subdivisions of strata by dividing Alpine areas further by 

altitude to create substrata. 

 

A number of climate zonations have been defined within the specific field of 

pesticide registration, mainly under the hospices of the FOCUS groups.  FOCUS  
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Figure 3.   The proposed agro-climatic classification of Bouma (2005). 
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 (1995) first presented a total of 10 climatic scenarios which were aimed to cover the 

variability in climates in Europe (Figure 4).  Although the report is not explicit about 

this aspect, it appears that the zonation reflects differences in annual temperatures and 

rainfall. The FOCUS working group on soil persistence models (FOCUS, 1997a) 

combined information on average annual temperature and the net precipitation 

amount (defined as the difference between average annual sums of precipitation and 

evapotranspiration) to result in eight climatic zones (Figure 5).  The first FOCUS 

surface water group (FOCUS, 1997b) did not produce any specific zonation and 

climatic scenarios, but called for the ad hoc development of scenarios based on i) 

Average annual hydraulically effective rainfall; ii) Average annual temperature; iii) 

Average winter temperature (during the months of December, January & February); 

iv) Average summer temperature (during the months of June, July& August); v) 

Frequency of rainfall events; and, vi) Intensity of rainfall events. The second FOCUS 

surface water group (FOCUS, 2001) defined a number of agro-environmental 

scenarios which partly reflected variations in climate across Europe.  The climatic 

data considered in their analysis were the average annual precipitation, the daily 

maximum spring rainfall, the average spring (March, April and May) and autumn 

(September, October and November) temperatures and the average annual recharge.  

These various variables were plotted for the whole of Europe on the basis of the CRU 

dataset.  The FOCUS groundwater group (FOCUS, 2000) developed a total of nine 

scenarios to be used in the registration of pesticides and weather data were attached to 

each of these scenarios. The various scenarios were developed on the basis of average 

annual temperatures and rainfall and the data were taken from the MARS European 

database (Vossen and Meyer-Roux, 1995) and CRU dataset where MARS data were 

deemed inappropriate. 
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Figure 4.   The ten climatic zones proposed by FOCUS in 1995 (after FOCUS, 1995). 

 

 
 

Figure 5.  The eight climatic zones proposed by FOCUS in 1997 (after FOCUS, 1997a). 

 

 

In the present study, modelling investigations were undertaken to identify the climatic 

factors which most influence pesticide fate.  The variables identified were then use to 

support the development of a climatic zonation of Europe.  Principal components 

analysis was used to identify the dominant modes of variability of the key eight 

variables. K-means clustering was then used to identify 16 coherent climatic zones 

(the ‘FOOTPRINT climatic zones’) relevant for pesticide fate by leaching and 

drainage across Europe. 
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2 IDENTIFICATION OF CLIMATIC FACTORS AFFECTING PESTICIDE LOSS 
BY DRAINAGE AND LEACHING 
 

 

2.1 Methodology 
 

The transport of three pesticides by leaching and to drains was simulated for six 

different climatic series and five application dates in the spring and autumn using the 

pesticide leaching model MACRO.  Output statistics were generated for 78 modelling 

scenarios, based on two site locations (Oxford, UK, and Zaragosa, Spain) and 

variations in soil type, season, applied pesticide, and leaching either to 1-m depth or 

to tile drains (in the case of Oxford) at depths of 0.6 – 0.8 m.  The transport scenarios 

are referred to as “leaching” or “drainage,” respectively.  Fifty-four modelling 

scenarios comprising over 1,600 MACRO simulations were conducted using climatic 

data series generated from conditions at Oxford, and 24 leaching scenarios 

comprising an additional 720 simulations were conducted based on conditions in 

Zaragosa. 

 

 

2.1.1 Soils 
 

Soil series were selected to represent the whole spectrum of potential transfer of 

pesticides through soil profiles in northwestern Europe.  The four soils retained for 

leaching simulations were (listed here in order of increasing clay of from 9 – 40% in 

the top two layers): Cuckney (CU), Hall (HA), Ludford (LU), and Enborne (EN) 

(Dubus et al., 2002).  These soil series were used in both the Oxford and Zaragosa 

simulations.  The five soils retained for drainage simulations (Oxford only) had 13 – 

56% clay in the top two layers: Quorndon (QU), Clifton (CL), Brockhurst (BR), 

Hanslope (HS), and Denchworth (DE) and were used by Brown and colleagues 

(Brown et al., (2004) as part of a spatially-distributed modelling exercise aimed at 

assessing the variability in the assessment of the risk of pesticide being transferred to 

drainage in England and Wales. The soils were initially identified from the SEISMIC 

database (Hallett et al., 1995) as representative of the spectrum of vulnerabilities for 

the transport of pesticides to drainage systems as part of maize cultivation in the UK.  

Soils were selected based upon soil factors including organic carbon content, texture, 

likelihood of macropore flow and average depth to groundwater. MACRO was 
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parameterised for the soils using procedures described in detail in Dubus & Brown 

(2002) and Brown et al. (2004).  

 

 

2.1.2 Pesticides 
 

Three pesticides were considered in the modelling in an effort to cover some of the 

variability which may arise from the use of compounds with different environmental 

fate properties. Pesticides 1 and 2 have the same environmental fate properties as 

those used previously by Dubus and colleagues to investigate the sensitivity of 

pesticide leaching models -including MACRO - to changes in input parameters 

(Dubus & Brown, 2002; Dubus et al., 2003).  Pesticide 1 has a Koc value of 20 ml/g 

and a laboratory DT50 of 7.8 days at 20°C whilst Pesticide 2 has a Koc of 100 ml/g 

and a laboratory DT50 value of 23.3 days at 20°C.  As noted by Dubus et al. (2003), 

although hypothetical, the properties of the two compounds fall with the range of 

those registered for use in Europe. Pesticide 3 was selected to reflect compounds 

which sorb more strongly to soils, but which exhibit slower degradation in the field.  

Pesticide 3 has a Koc of 220 ml/g and a laboratory DT50 of 88 days. Degradation of 

the three compounds was assumed to follow first order kinetics. The compounds were 

assumed to be applied at various dates in the autumn or in the spring (see application 

scenarios below) to a winter wheat crop. 

 

 

2.1.3 Climate and investigations into the influence of application dates 
 

At both Oxford and Zaragosa, two application scenarios (spring and autumn) were 

considered for the three compounds. Five application dates representing the likely 

window of variability in the application date of an herbicide compound in northern 

Europe were used.  The dates were: 1 September, 15 September, 30 September, 15 

October and 31 October for the autumn application; 1 April, 16 April, 30 April, 15 

May and 31 May for the spring application.  Climatic series were generated as 

follows. 

 

The modelling was undertaken using a synthetically-generated rainfall series of 100 

years for the city of Oxford (Lat. 51°45' N, Long. 1°15' W) in the UK and for the city 

of Zaragosa in Spain (Lat. 41°39' N, Long. 0°52' W). In each case, a synthetic rainfall 

series was simulated by fitting the stochastic rainfall model, RainSim (Burton et al., 
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2004), to five daily rainfall statistics: mean rainfall, proportion of dry days (pdry), 

variance of daily rainfall, lag-1 autocorrelation and the skewness coefficient. Figure 6 

shows the observed, fitted and simulated reference statistics for Oxford and Figure 7 

shows the same for Zaragosa.  

 

Simulated rainfall statistics do not exactly match the fitted statistics. The difference 

between observed and fitted statistics corresponds to the closest approximation that 

the rainfall model can make, according to its stochastic structure, to a given set of 

statistics. Certain combinations of statistics may be unphysical or it may not be 

possible to obtain an exact match using the model.  However, the results shown here 

indicate a very good match between the observed statistics and fitted model. An 

exception to this can be seen in Figure 6(c). The fitting procedure for pdry contains an 

approximation which introduces a bias. The blue curve in Figure 6(c) indicates a bias-

corrected pdry to which the model is fitted. The simulated data is then seen to match 

the observed data (black line) well.  

 

Synthetic data was simulated to represent the sensitivity to changes in one of four 

characteristics of the rainfall: the annual total, seasonality, proportion of dry days and 

skewness.  A set of target statistics were developed for each characteristic and for 

each variation step. These are referred to as target statistics as they take the place of 

observed statistics in the fitting procedure. Appendix 1 gives more detail on the 

rainfall datasets produced for use in this sensitivity study.  

 

For Oxford, the 100-year dataset was first sectioned in five 20-year subsets and a 

sixth 10-year climatic series was obtained by selecting data for the period covering 

the years 1965 to 1975.  
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Figure 6.  The Oxford rainfall series.  

Daily statistics of the observed climate (solid black line) and the synthetic series (crosses= fitted; 
circles=simulated):   a) mean (mm/d); b) variance (mm2/day2); c) proportion of dry days, pdry; d) lag-1 

autocorrelation; e) skewness coefficient 
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Figure 7.  Zaragosa rainfall series 
Daily statistics of the observed climate (solid black line) and the synthetic series (crosses= fitted; 

circles=simulated):   a) mean (mm/d); b) variance (mm2/day2); c) proportion of dry days, pdry; d) lag-1 
autocorrelation; e) skewness coefficient 

 

 

The rainfall data were combined to synthetic temperature and PET data included in 

the SEISMIC database (Hallett et al., 1995) for the Cambridge weather station (Lat. 

52°12'N, Long. 0°07'E).  The Cambridge data were originally synthesised using the 

WGEN weather generator (Richardson, 1985).  Checks on the relevance of the 

synthetic data to represent real conditions have been conducted as part of earlier 

modelling activities (Brown et al., 2004). The Oxford and Cambridge data were taken 

as representative of north-western European climate as part of a modelling exercise 

aimed at investigating the influence of change in application dates on losses in 

drainage and leaching across the major climate types throughout Europe (data not 

shown).  For Zaragosa, PET and temperature data were obtained through the 

European MARS dataset for the grid cell covering Zaragosa. 
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2.1.4 Modelling strategy 
 

A warm-up period of 1 year was included in the modelling to allow the model to 

equilibrate prior to a single pesticide application in year 2.  Each modelling run 

involved one application of a pesticide and the simulation of its fate for a relevant 

number of years (6 years for Pesticide 1, 10 years for Pesticide 2 and 19 years for 

Pesticide 3). The number of years sufficient to allow a complete transfer of the three 

pesticides was determined through preliminary modelling experiments. 

 

The MACRO modelling was undertaken for the i) three pesticides; ii) the four 

leaching soils or five drainage soils; iii) the two application scenarios; iv) the five 

application dates for each application scenario; v) and the six climatic series, 

potentially resulting in 720 leaching observations and 900 drainage observations.  At 

the Oxford site, however, significant rain (59 mm) occurred on the 1 September 

application date associated with the fifth climate series.  Because farmers would not 

apply pesticides under such conditions, we excluded this application date from the 

analysis.  The final Oxford data set consisted of 708 leaching and 885 drainage 

observations.  The 1 September application date was dry or had nominal rain at 

Zaragosa, resulting in 720 observations for this site.  At both sites, the MACRO 

output variable which was considered to be of interest within the scope of the present 

study was the cumulative pesticide loss over the simulation period (expressed in 

mg/m2). 

 

2.1.5 Derivation of climatic variables 
 

Climate statistics were derived for each of the six climatic series and are as follows: 

Rx [x = -91, -61, -30, -20, -14, -10, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 10, 

14, 20, 30, 61, 91, 122, 152, 183, 213, 244, 274, 305, 335, 365, 729, 1095, 1825, 

3650, 5475, 7300] is the cumulative rainfall (in mm) for the period from day x to the 

pesticides application date (x<0) in the case of antecedent rain, or from the 

application date to day x (x>0); 

Cy [y=2, 5, 10, 20, 50, 100] is the number of days after application until y mm of 

cumulative rainfall occurs; 

Tx [x = 0, 1, 2, 3, 4, 5, 6, 7, 10, 14, 20, 30, 61, 91, 122, 152, 183, 213, 244, 274, 

305, 335, 365, 719] is the average temperature in ºC over the x days following 

application; 
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Ly [y = -30, -20, -10, 10, 20, 30] is the number of days before or after application 

until a y-mm amount of daily rain occurs (Ly is referred to as the “lag time”); y<0 

indicates that a rain event of y mm occurred before the date of pesticides application, 

and y>0 indicates that the rain event occurred after application; 

WRA_m_n [m = September, October, November; n = March, April] is the 

cumulative daily rainfall between the beginning of month m and the end of month n; 

WRE_m_n [m = September, October, November; n = March, April] is the 

cumulative daily recharge between the beginning of month m and the end of month n, 

where recharge is defined as the difference between daily rainfall and potential 

evapotranspiration.  Potential evapotranspiration was estimated using the Penman- 

Monteith method, based on measured weather data in the study area. 

 

 

2.1.6 Statistical methods 
 

Predicted, cumulative pesticide losses at 1-m depth (Oxford and Zaragosa) and in 

drains (Oxford only), climate factors (cumulative rain, cumulative winter rainfall and 

recharge, average temperature, lag time), and other descriptive variables in the data 

set (average percent clay in the first two horizons, season of pesticide application) 

were organized by season-soil-pesticide scenarios and analyzed with nonparametric 

statistics.  We computed Spearman correlations for all of the climate variables to 

determine the strength of monotonic relations between predicted pesticide loss and all 

climate variables listed above, for each of the 78 season-soil-pesticide scenarios.  

Because Spearman correlations are based on ranked data, they are resistant to the 

effects of extreme values which commonly occur with environmental data (Helsel 

and Hirsch, 1992).  We anticipated that Spearman correlations would yield insight 

into relations between pesticide loss and specific climate factors for the individual 

season-soil-pesticide combinations.  We used SAS version 8.01 (SAS, Institute Inc., 

2006) to compute Spearman correlations. 

 

 

2.2 Results for Oxford 
 

 

Modelling results 
 

Results of individual modelling trials for climatic conditions at Oxford are shown in 

Annexes 1 – 105 in the separate appendix document (each annex shows instantaneous 
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or cumulative pesticide losses for six climatic data series).  In general, water and 

contaminant transport in the vadose zone are driven by precipitation inputs and other 

factors.  The modelling results indicate that pesticide loss depends on the timing of 

rainfall relative to the application date of the pesticide.  For example, Annex 2 shows 

total pesticide loss predicted by MACRO at 1 m depth after 10 years for the six 

climate series.  In the first climate series (“year #1” in the figure), significant 

pesticides loss occurs after the first and second application dates (September 1 and 

15, year 1).  Losses following the October 1 application date are substantially less, 

indicating that the onset of significant precipitation occurred sometime before 

October 1.  In the fourth climate series (Annex 2, Application in year #4), major 

rainfall probably occurred shortly after the October 1 application.  In the fifth climate 

series (Annex 2, Application in year #5), one can assume that a major rain event 

occurred between September 1 and September 15.  In the sixth climate series (Annex 

2, Application in year #6), all solute losses start at the same time regardless of 

application date, and losses are somewhat greater after the November 1 application 

date.  In this case, significant precipitation occurred sometime after November 1.  

Presumably, pesticides applied earlier in the season had more time to degrade or to 

diffuse into the soil matrix.   

 

The effects of application date are easily seen for pesticide 1, but the effects are less 

noticeable for pesticide 2 (Annex 4) and even less so for pesticide 3 (Annex 6), the 

least mobile of the three pesticides.  Overall, it is difficult to draw conclusions on the 

effect of the timing of rain because the weather patterns have considerable 

uncertainty, which is reflected in the various climatic data series. 

 

MACRO-predicted pesticide losses were aggregated for each site location (Oxford 

leaching scenarios, Oxford drainage scenarios, and Zaragosa leaching scenarios) to 

generate percentiles of total pesticides loss based on all modelling observations in 

each group.  Results for Oxford indicate that percentiles of total pesticide loss were 

about the same for leaching and drainage scenarios (median = 0.012 mg/m2 and 0.011 

mg/m2, respectively)  (Table 1).  Pesticide losses expressed as percent of the applied 

mass (2 mg/m2) were 0.60% and 0.55%, respectively, for the median observations, 

and reached a maximum of 29 and 14%, respectively.  A Wilcoxon Rank Sum test 

indicates that differences in cumulative pesticide loss for leaching and drainage are 

statistically insignificant (p = 0.154).  Maximum cumulative pesticide loss is 

somewhat higher for leaching (0.58 mg/m2) than for drainage (0.28 mg/m2), which 

may reflect differences in soil properties and/or the hypothetical configuration of the 
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drains.  Three soils used in drainage scenarios have an organic carbon content of 

1.9% or more, compared with two such soils in leaching scenarios.  Increased organic 

carbon content in soils generally results in increased sorption of pesticides, reducing 

or delaying pesticide loss.  Leaching scenarios predict pesticide loss at 1-m depth 

directly beneath the point of pesticide application.  In contrast, drainage scenarios 

assume interception of a fraction of water and dissolved pesticides, with the 

remainder leaching vertically to ground water.  Based on common practice in the soils 

studied, drain depth was varied from 0.6 to 0.8 m in MACRO simulations, with 

intervals of 2 – 30 m between drains.  Wider intervals may have resulted in less 

recovery of pesticide mass by the drains (i.e., smaller predicted losses). 

 
Leaching Drainage 

Statistic 

Total 
pesticide 

loss, mg/m2 

 
Percent loss 

Total 
pesticide 

loss, mg/m2 

 
Percent loss 

0th percentile (minimum) 0.000001 0.000050 0.0000031 0.00016 
25th percentile 0.00096 0.048 0.0010 0.050 
50th percentile (median) 0.012 0.60 0.011 0.55 
Mean 0.048 2.4 0.031 1.6 
75th percentile 0.046 2.3 0.042 2.1 
100th percentile (maximum) 0.58 29 0.28 14 

 
 
Table 1: Statistics of predicted, total solute loss for aggregated MACRO output under leaching (N 

= 708) and drainage (N = 885) scenarios at Oxford. 

Percent loss is based on a pesticide application rate of 2 mg/m2. 

 

Identification of climatic factors 
 

Spearman correlations between climatic variables and pesticide loss in leaching 

(Table 2) and drainage (Table 3) were computed for all 78 season-soil-pesticide 

combinations, to better understand relations between pesticide loss and specific 

climate factors.  Soils in Table 2 and Table 3 are presented in order of increasing 

susceptibility, based primarily on percent clay and percent organic carbon in the first 

two layers.  Susceptibility generally increases as percent clay increases.  However, 

the Hall soil (clay = 11%) is more susceptible than the Ludford soil (clay = 22%) 

because the Hall has less organic carbon at depth (0.3% at 50 – 70 cm) compared 

with the Ludford (0.5% at 50 – 75 cm for) (Dubus et al., 2002).  Table 2 and Table 3 

show the five climatic variables with the highest Spearman correlation coefficients 

for leaching and drainage for specific soil×pesticide scenarios.  A colour coded 

scheme is used to increase the readability of the results.  Initial analysis indicated that 

WRA_m_n is highly correlated with WRE_m_n (Spearman’s rho ≅ 1 for the same 
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months m_n, for leaching data) and that the results are redundant if both are used.  

Also, correlation results are essentially the same regardless of which variable is used.  

Therefore, WRE_m_n was excluded from subsequent analysis and the following 

discussion is based on WRA_m_n and the remaining variables described above. 
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Spring Fall 
Cuckney Cuckney 

Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 
T244 -0.758 R729 0.853 R1825 0.917 R244 0.775 WRA_oct_apr 0.917 R729 0.738
T213 -0.745 WRA_oct_apr 0.782 R1095 0.906 R152 0.759 WRA_oct_mar 0.909 R1825 0.728
T274 -0.727 WRA_nov_apr 0.762 L30 -0.889 R213 0.755 WRA_sep_apr 0.890 R1095 0.700
R729 0.711 R1095 0.753 R729 0.830 R183 0.753 WRA_nov_apr 0.889 R3650 0.675
T305 -0.683 R365 0.687 R3650 0.827 R274 0.750 R152 0.879 R7300 0.520

Ludford Ludford 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.494 WRA_nov_apr 0.862 WRA_oct_apr 0.973 R152 0.632 WRA_oct_mar 0.857 WRA_oct_mar 0.973
R61 0.487 WRA_nov_mar 0.822 WRA_nov_apr 0.971 WRA_nov_apr 0.623 WRA_sep_apr 0.856 WRA_sep_apr 0.969
C100 -0.474 WRA_oct_apr 0.813 WRA_sep_apr 0.925 WRA_oct_mar 0.620 WRA_nov_mar 0.846 WRA_oct_apr 0.966
R20 0.463 WRA_sep_apr 0.789 WRA_oct_mar 0.918 T61 -0.616 WRA_sep_mar 0.832 WRA_nov_apr 0.930
L20 -0.439 WRA_oct_mar 0.787 WRA_nov_mar 0.869 WRA_nov_mar 0.615 R152 0.830 R152 0.923

Hall Hall 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.627 L20 -0.583 R729 0.860 T61 -0.631 R213 0.754 WRA_oct_mar 0.950
R20 0.597 R61 0.560 R365 0.724 T30 -0.616 WRA_nov_apr 0.753 WRA_nov_apr 0.942
R14 0.557 R91 0.536 R1095 0.716 T20 -0.579 R244 0.752 WRA_sep_apr 0.942
C50 -0.503 R10 0.532 WRA_nov_apr 0.710 T1 -0.578 R183 0.746 R213 0.941
R30 0.449 R183 0.513 WRA_oct_apr 0.679 T91 -0.571 WRA_oct_apr 0.744 R183 0.940

Enborne Enborne 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.466 R335 0.852 WRA_oct_apr 0.978 T1 -0.708 WRA_nov_mar 0.860 WRA_oct_mar 0.972
R20 0.386 R365 0.847 WRA_nov_apr 0.959 T30 -0.674 WRA_sep_apr 0.855 WRA_oct_apr 0.963
R14 0.368 R305 0.840 WRA_oct_mar 0.938 T2 -0.672 WRA_oct_mar 0.853 WRA_sep_apr 0.956
T122 -0.341 WRA_oct_apr 0.836 WRA_sep_apr 0.937 T61 -0.666 WRA_nov_apr 0.850 WRA_nov_apr 0.949
T1 -0.329 WRA_nov_apr 0.803 WRA_nov_mar 0.872 T14 -0.660 WRA_oct_apr 0.831 R183 0.933
 

Color key  
Winter rainfall Short-term rainfall 

(≤ 91days) 
Long-term rainfall 

(>91 days) 
Cumulative rainfall Lag times to rainfall Short-term temperature 

(≤ 91days) 
Long-term temperature 

(> 91days) 
  

Table 2: The top five Spearman correlations for climatic variables under each season-soil-pesticide scenario for Oxford leaching simulations 

See text for a detailed description of the variables. 
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Spring Fall 
Quorndon Quorndon 

Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 
R305 0.825 WRA_sep_apr 0.854 R365 0.936 R152 0.826 WRA_sep_mar 0.781 WRA_oct_apr 0.959
R335 0.796 WRA_oct_mar 0.826 WRA_oct_apr 0.929 WRA_oct_mar 0.815 WRA_sep_apr 0.773 WRA_sep_apr 0.933
R365 0.770 WRA_nov_mar 0.824 WRA_nov_apr 0.906 WRA_oct_apr 0.799 WRA_oct_mar 0.747 WRA_nov_apr 0.920
R274 0.723 WRA_nov_apr 0.819 R335 0.904 WRA_sep_apr 0.795 WRA_nov_mar 0.736 WRA_oct_mar 0.914
R729 0.702 WRA_oct_apr 0.808 R305 0.857 WRA_nov_apr 0.782 R152 0.709 R152 0.859

Clifton Clifton 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.468 T365 -0.534 R1095 0.969 T61 -0.644 WRA_oct_apr 0.891 R1095 0.860
R20 0.394 T335 -0.511 R729 0.949 T91 -0.631 WRA_nov_apr 0.873 WRA_oct_apr 0.752
R14 0.362 T244 -0.499 R3650 0.806 WRA_nov_apr 0.622 WRA_oct_mar 0.866 R213 0.723
R6 0.320 T719 -0.488 R365 0.675 R152 0.620 WRA_sep_apr 0.852 R183 0.677
T152 -0.319 L-20 0.476 L30 -0.660 R305 0.613 R183 0.852 WRA_nov_apr 0.672

Brockhurst Brockhurst 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.503 R10 0.492 R3650 0.929 T61 -0.698 R213 0.879 R213 0.854
R20 0.442 C100 -0.483 R1095 0.850 T30 -0.672 R183 0.874 R244 0.854
R14 0.420 R20 0.474 L30 -0.824 T91 -0.651 WRA_oct_apr 0.845 R1095 0.837
C50 -0.364 L20 -0.469 R729 0.770 T20 -0.629 R244 0.831 R274 0.831
T122 -0.350 C50 -0.451 R5475 0.767 T1 -0.629 WRA_oct_mar 0.828 R365 0.817

Hanslope HS 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.491 R10 0.534 R729 0.850 T61 -0.696 WRA_nov_apr 0.809 WRA_oct_mar 0.955
R20 0.421 R20 0.478 WRA_nov_apr 0.848 T30 -0.665 WRA_sep_apr 0.805 WRA_sep_apr 0.946
R14 0.405 R61 0.470 R365 0.842 T1 -0.654 WRA_oct_mar 0.804 WRA_nov_apr 0.945
T122 -0.356 C100 -0.454 WRA_oct_apr 0.834 T20 -0.634 WRA_oct_apr 0.798 R213 0.944
T1 -0.352 R14 0.432 R335 0.790 T91 -0.624 WRA_nov_mar 0.795 WRA_oct_apr 0.943

Denchworth Denchworth 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R10 0.485 R10 0.518 WRA_nov_apr 0.872 T61 -0.687 WRA_oct_mar 0.831 WRA_oct_mar 0.963
R20 0.413 R20 0.466 WRA_oct_apr 0.844 T30 -0.643 WRA_sep_apr 0.831 WRA_sep_apr 0.953
R14 0.396 R61 0.455 R365 0.819 T1 -0.640 WRA_nov_apr 0.826 R183 0.949
T122 -0.354 C100 -0.453 R729 0.819 T91 -0.620 WRA_nov_mar 0.823 WRA_nov_apr 0.947
T1 -0.346 L20 -0.423 R335 0.769 T20 -0.612 WRA_oct_apr 0.816 WRA_oct_apr 0.947
 

Color key  
Winter rainfall Short-term rainfall 

(≤ 91days) 
Long-term rainfall 

(>91 days) 
Cumulative rainfall Lag times to rainfall Short-term temperatures 

(≤ 91days) 
Long-term temperatures 

(>91 days) 
  

Table 3: .  The top five Spearman correlations for climatic variables under each season-soil-pesticide scenario for Oxford drainage simulations. 

See text for a detailed description of the variables. 
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At Oxford, none of the rainfall statistics describing the rainfall patterns and 

magnitude shortly before application was found to play a predominant role in the 

determination of pesticide loss.  This result seemingly is corroborated by laboratory 

studies that found no significant relation between initial soil moisture content and the 

leaching of isoproturon or its concentration in soil pore water (Beulke et al., 2004).  

Additionally, variations in soil moisture content were found to have no significant 

effect on losses of isoproturon, chlorotoluron, and linuron to drains in field 

experiments conducted on Denchworth heavy clay soils (Brown et al., 2001).  

However, this contrasts with other studies reported in the literature which tend to 

show that the water content of the soil at the time of application may have a 

significant effect on the transport of pesticides.  Processes invoked to explain these 

differences include diffusion and sequestration in micropores and/or organic matrices 

(Rocha et al., 2006), and the increased accessibility of sorption sites as organic matter 

becomes more hydrophilic with increasing moisture (Ochsner et al., 2006).   Neither 

of these processes is explicitly considered in MACRO. 

 

For leaching at Oxford, the main climate statistic determining the extent of losses for 

Pesticide 3 - the pesticide displaying the smallest mobility - was winter rainfall 

between October/November and March/April immediately following the pesticide 

application, irrespective of the application scenario considered (spring and fall) 

(yellow variables in Table 2).  Correlations between pesticide loss and winter rainfall 

typically were > 0.80, and the maximum correlation was 0.98 (spring application, 

Enborne soil, Pesticide 3).  An exception to this overall dominance of winter rainfall 

statistics was noted for the more sandy soil (Cuckney series) where an influence of 

more long-term rainfall statistics (cumulative rainfall typically from 5 months to 5 

years) was identified (light blue in Table 2). The specific behavior noted for the 

Cuckney can be related to the leaching patterns of Pesticide 3 which spans over ca. 15 

years (data not shown).  For Pesticide 1 which can be considered as the more mobile 

of the three compounds, an effect of winter rainfall following application was still 

apparent for the less susceptible soils for fall applications (Cuckney and Ludford; 

yellow variables) while leaching losses for the more susceptible soils (Hall and 

Enborne) were negatively correlated with short-term air temperatures (1-day to 3-

month average temperatures; dark orange variables), especially after fall application.  

This specific behaviour of Pesticide 1 is consistent with the transfer of a rapidly 

degrading compound moving quickly down the profile through preferential pathways.   
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For spring applications, losses of Pesticide 1 could be linked to a number of statistics 

describing the rainfall conditions after application, including i) the cumulative rainfall 

over the 10 to 61 days following application (R10 to R61; dark blue); the number of 

days until the profile receives an ‘extreme’ rainfall event (e.g. L20, the number of 

days from application to a 20-mm daily rainfall event; green); or, the number of days 

after application until a cumulative rainfall volume of 50 or 100 mm is reached (C50 

or C100; purple).  In contrast to winter rain statistics, these correlations all were < 

0.80 (absolute value basis).  Again, the Cuckney soil (where flow occurs primarily in 

the soil matrix) displayed more long-term behaviour, with an influence of average 

temperatures computed over a period from 7-10 months (light orange).  Results for 

Pesticide 2 were found to be intermediate between those described above for 

Pesticide 1 and Pesticide 3.  For fall applications, the influence of winter rainfall 

following application on losses of Pesticide 2 was widespread amongst the various 

soils considered (yellow). In contrast, losses of Pesticide 2 following spring 

applications were determined by winter rainfall, but also by long-term rainfall (light 

blue), rainfall volumes shortly after application (dark blue) and the time to extreme 

rainfall events (green). 

 

For drainage at Oxford and in contrast to results obtained for leaching, a stronger 

influence of the more dynamic aspects of the meteorological conditions shortly after 

application was apparent, especially for Pesticide 1 and 2 (Table 3).  Winter rainfall 

after application was again found to be related to pesticide loss (yellow), but its 

influence mainly was limited to the transfer to drains of Pesticides 2 and 3 following 

fall applications and to transfers for the less structured Quorndon soil for spring 

applications.  As before, correlations with winter rainfall typically were > 0.80; the 

maximum correlation was 0.96 (fall application, Quorndon soil, Pesticide 3).  Again, 

the influence of rainfall and temperature conditions shortly after application (dark 

blue and dark orange) was clear for Pesticide 1 in the soils excepting the Quorndon. 

A similar behaviour was noted for Pesticide 2 in more clayey soils, in contrast to the 

results obtained for leaching.  The influence of lag time to 20- and 30-mm rain events 

(green) was more prevalent for drainage than for leaching and was limited to 

pesticides 2 and 3 following spring application of pesticides on more structured soils. 
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2.3 Results for Zaragosa 
 

 

Modelling results 
 

The results of individual modelling trials for climatic conditions at Zaragosa are 

shown in Annexes 109 – 155 of the separate appendix document.  The influence of 

the timing of rain in relation to pesticide application date is similar to that described 

above for Oxford. 

 

Compared with Oxford, total pesticide loss typically was less for Zaragosa 

observations. Expressed as percent of applied mass (2 mg/m2), pesticide loss was 

0.0178% for the median of the observations, and the maximum percent loss 

(considering all 720 modelling observations) was 4.9%, which corresponds to a total 

loss of 0.098 mg/m2 as shown in Table 4. Percent pesticide losses at Zaragosa 

presumably are less because smaller rainfall events are less frequent (discussed 

below). 

 
 Total pesticide loss, 

mg/m2 
 

Percent loss 
0th percentile (minimum) 1.7E-18 <0.00001 
25th percentile 0.0000025 0.00013 
50th percentile (median) 0.00036 0.018 
Mean 0.0067 0.34 
75th percentile 0.0066 0.33 
100th percentile (maximum) 0.098 4.9 
 

 

Table 4: Statistics of predicted, total solute loss for aggregated MACRO output for 
Zaragosa leaching scenarios (N = 720). 

Percent loss is based on a pesticide application rate of 2 mg/m2. 

 

  

Identification of climatic factors 
 

Spearman correlations for Zaragosa leaching scenarios differ from those at Oxford in 

that temperature effects are more widespread and the influence of winter rain is 

substantially reduced (Table 5).  Temperature (light orange) was moderately to 

strongly correlated with pesticide loss for all soils except the Hall, for both spring and 

fall applications.  The influence of temperature was seen primarily for pesticides 1 

and 2, the more mobile of the three compounds, but also for pesticide 3 on the more 

structured soils (Ludford and Enborne).  The influence of winter rain at Zaragosa, 
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(yellow) is limited to pesticides 2 and 3 applied to the Hall, which has intermediate 

susceptibility (clay in first two layers = 11%, organic carbon in first two layers = 

1.9%, and organic carbon at 50-70 cm = 0.3%). 

 

 

Similar to Oxford, short-term climatic variables (primarily rain within 7 days) were 

noted for pesticides 1 and 2 on more structured soils.  Short-term temperature was 

less prevalent than at Oxford and limited to pesticide 1 on the more structured soils 

(Ludford and Enborne).  Unlike Oxford, antecedent rain (R-x) within three months 

(dark blue) was positively correlated with losses of pesticides 1 and 2 following fall 

application, and negatively correlated with pesticide 3 on the less structured Cuckney. 
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Spring Fall 
Cuckney Cuckney 

Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 
T274 -0.760 T335 -0.665 L20 -0.710 L30 0.581 L30 0.765 R-91 -0.472 
T244 -0.748 T305 -0.636 R5475 -0.553 T213 -0.577 L20 0.714 R7300 0.427 
T305 -0.715 T365 -0.633 C50 0.541 T122 -0.520 R365 -0.604 R3650 0.421 
T213 -0.672 T274 -0.589 C100 0.504 L20 0.509 L10 0.543 C20 0.396 
T335 -0.625 T244 -0.532 L30 -0.433 T152 -0.509 R335 -0.536 R-61 -0.381 

Ludford Ludford 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R5475 -0.305 T274 -0.676 T305 -0.496 T213 -0.591 L30 0.727 L30 0.736 
T183 -0.240 T305 -0.669 T335 -0.488 T122 -0.568 L20 0.663 L20 0.553 
R2 -0.223 T335 -0.620 T274 -0.464 T152 -0.565 L10 0.567 R365 -0.550 
R10 -0.208 T244 -0.599 T365 -0.439 T183 -0.565 T213 -0.541 T244 -0.537 
WRA_nov_mar -0.207 T365 -0.497 L30 0.387 T91 -0.561 R365 -0.509 T213 -0.493 

Hall Hall 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R3 0.857 R5 0.695 WRA_nov_apr 0.778 R20 0.729 R3650 0.810 R3650 0.946 
R4 0.855 R3 0.689 WRA_nov_mar 0.760 R3 0.722 WRA_nov_mar 0.782 WRA_nov_apr 0.903 
R5 0.854 R4 0.678 R3650 0.737 R6 0.717 WRA_nov_apr 0.768 WRA_nov_mar 0.892 
R6 0.821 R6 0.657 WRA_oct_apr 0.708 R4 0.705 R729 0.726 R729 0.850 
R7 0.783 WRA_nov_mar 0.645 WRA_oct_mar 0.654 R7 0.697 R5475 0.690 WRA_oct_apr 0.819 

Enborne Enborne 
Pesticide 1 Pesticide 2 Pesticide 3 Pesticide 1 Pesticide 2 Pesticide 3 

R3 0.856 T335 -0.837 R7300 0.644 T122 -0.532 T719 -0.939 R7300 0.815 
R4 0.854 T305 -0.809 R5475 0.605 T61 -0.519 T365 -0.788 R5475 0.670 
R5 0.852 R183 0.746 T719 0.499 R-61 0.514 C100 -0.742 C100 0.527 
R6 0.817 R152 0.741 L30 0.458 T91 -0.511 T213 -0.689 R3650 0.455 
R7 0.779 T274 -0.741 R91 -0.455 T719 -0.494 R-91 0.662 L10 0.428 

 
Color key  

Winter rainfall Short-term rainfall 
(≤ 91days) 

Long-term rainfall 
(>91 days) 

Cumulative rainfall Lag times to rainfall Short-term temperature 
(≤ 91days) 

Long-term temperature 
(> 91days) 

 
  

Table 5: The top five Spearman correlations for climatic variables under each season-soil-pesticide scenario for Zaragosa leaching simulations. 

See text for a detailed description of the variables. 
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The influence of lag time (green) is more prevalent at Zaragosa than at Oxford, 

especially for pesticides 2 and 3 on less structured soils (Cuckney and Ludford).  

Unlike Oxford, however, lag time is positively correlated with pesticide loss, which 

seems counter-intuitive.  We expected decreasing pesticide loss with increasing time 

to extreme rain events.  At Zaragosa, the relation between lag time and pesticide loss 

is non-monotonic, so correlation analysis may be inappropriate for this variable.  

Scatterplots indicate a negative relation between lag time and predicted pesticide loss 

within discrete data clusters representing specific climatic series, but “average” 

pesticide loss for each cluster generally increases with time, so the net effect is 

positive (data not shown).  This behaviour might be related to climatic differences 

between the two sites.  Cumulative distribution functions indicate that Oxford has up 

to 30% more daily rain events of 10 mm or less in size, compared with Zaragosa.  

Figure 8 shows results for the third climatic data series and is typical.  The 

cumulative effect of the increased frequency of rain is manifested as strong, positive 

correlation between winter rain and pesticide loss at Oxford (yellow cells in Table 2).  

In contrast, the climate at Zaragosa is somewhat warmer and drier and the 

predominant variable is temperature, which is inversely correlated with pesticide loss 

for several scenarios (light orange cells in Table 5). Average annual temperature is 

9.4 ºC at Oxford and is 14.5 °C at Zaragosa. 
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Figure 8: Frequency of rainfall events ≤10 mm in size at Oxford and Zaragosa, for the 
third climatic data series.   
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2.4 Conclusions on climatic variables to be used in the climatic zonation 
 

Modelling 
 

No consistent rules can be drawn regarding the amount of predicted pesticide loss and 

date of application because of the uncertainty of weather patterns reflected in the 

synthetic climatic data series.  Depending on the series, either an early or a late 

application can yield maximum pesticide loss by leaching, as can intermediate dates 

of application.  Additionally, total pesticide loss can be very different for the same 

soil depending on climatic series. 

 

In general, curves representing pesticide loss are smooth in sandy soil whereas in clay 

soils they have more peaks.  The amount of pesticide loss was equal in sandy and clay 

soils.  Considering pesticide loss, no particular soil was less at risk, as shown in 

Annexes 2 and 22 for leaching, and in Annexes 20 and 50 for drainage. 

 

In drainage simulations, initial losses often occurred in the same year as application 

(Annex 25).  In leaching simulations, initial losses appeared in the year following 

application (Annex 1). However, in sandy soils, initial pesticide loss by leaching can 

occur two to three years after application. 

 

At Oxford, the first losses of pesticide 1 by leaching appear generally during the first 

winter following the application, even if the application occurred in spring.  This was 

observed for Zaragosa as well (Annex 110).  Following application of pesticide 3, 

several years are needed to realize the first losses (Annex 77).  At Zaragoza,, the first 

(and only) losses of pesticide 3 can appear 15 years after application if the decade is 

dry or a few years after application if the decade is wet (Annex 155). 

 

Losses of pesticide 3 occurred during each winter for almost 20 years regardless of 

the time of application (Annex 5).  In contrast, there are almost no losses of pesticide 

1 four years after application (Annex 1).  This is true for drainage scenarios as well 

(Annex 21 and Annex 29). 
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Influence of climatic factors 
 

The results suggest that the climatic factors influencing pesticide loss tend to be 

specific to soil-pesticide combinations to some extent, but general rules can 

nevertheless be drawn.  For Oxford leaching scenarios, there is an overall strong 

influence of winter rainfall following application in spring or fall, especially for the 

more retained and less degraded compounds.  In contrast, the correlations revealed 

that losses of pesticides exhibiting smaller sorption capacities and hence being more 

mobile in the profile are likely to be more controlled by the meteorological conditions 

shortly after application and the length of time between application and extreme 

events.  This is especially true following spring application and in those soils with a 

larger clay content, which are typically subject to preferential flow phenomena.  

Oxford results obtained for drainage suggest that the same climatic factors are 

important, although the influence of climatic conditions shortly after application and 

the positioning of extreme events in relation to application are clearly greater. 

 

At Zaragosa and in contrast to Oxford, temperature effects are more widespread and 

the influence of winter rain is substantially reduced.  This may be due to the warmer 

average annual temperature at Zaragosa (14.5 °C), and the increased frequency of 

daily rain events of 10 mm or less in size at Oxford.  The influence of lag time is 

more prevalent at Zaragosa than at Oxford, especially for pesticides 2 and 3 on less 

structured soils (Cuckney and Ludford).  Unlike Oxford, however, lag time is 

positively correlated with pesticide loss, which may be an artefact of the univariate 

correlation analysis.  Relations between lag time and pesticide loss are non-

monotonic at Zaragosa.  Similar to Oxford, short-term climatic variables (primarily 

rain within 7 days) were noted for pesticides 1 and 2 on more structured soils at 

Zaragosa. 

 

 

 

3 CLIMATIC DATA 
 

Two data sources were used to define the climatological regions in this study on the 

basis of the key eight variables that were selected based on expert judgement and 

results from the modelling sensitivity analysis.  The European climatologies for mean 

temperature and precipitation variable (Table 6, 1-4) were derived from the CRU TS 

2.0 data set whilst those based on daily precipitation thresholds (Table 6, 5-8) were 
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constructed from the data provided by the European Climate Assessment & Dataset 

(ECA&D).  Each of these climatologies was constructed based on data over the 1961-

1990 period for a spatial domain covering the EU member states.  As this also 

included the 4 candidate countries of Bulgaria, Croatia, the Former Yugoslav 

Republic of Macedonia (FYROM) and Romania, the analysis was extended slightly 

to include the whole of the fifth nation, Turkey.  

 

  Definition 
1 SPR_TMP Mean April to June temperature (°C). 
2 AUT_TMP Mean September to November temperature (°C). 
3 WIN_PRE Mean October to March precipitation (mm) 
4 ANN_PRE Mean annual precipitation (mm). 
5 SPR_2 Number of days (April to June) where total precipitation > 2mm 
6 SPR_20 Number of days (April to June) where total precipitation > 20mm 
7 SPR_50 Number of days (April to June) where total precipitation > 50mm 
8 AUT_20 Number of days (September to November) where total precipitation > 20mm 

 

Table 6: Definitions of the 8 input variables used to define the climatic zones. 

 

 

3.1 CRU TS 2.0 
  

The CRU TS 2.0 data set (Mitchell et al., 2004) is a gridded global series of monthly 

climate means for the period 1901-2000. The data were constructed by the 

interpolation of station data onto a 0.5° by 0.5° grid and is an updated version of 

earlier datasets described in New et al. (1999, 2000).  

 

3.2 European Climate Assessment & Dataset (ECA&D or ECA) 
 

The ECA dataset contains 5162 series of observations at 1529 meteorological stations 

throughout Europe and the Mediterranean at a daily resolution for a total of 9 

variables including temperature and precipitation.  A total of 113 stations were 

selected from the dataset to satisfy two criteria: 

• to obtain a reasonable spatial coverage for Europe, particularly the EU25 

• to select series that were of the highest quality.  The ECA&D used 4 statistical 

tests to assess homogeneity, standard normal homogeneity test (Alexandersson, 

1986), the Buishand range test (Buishand, 1982), the Pettitt test (Pettitt, 1979) 

and the von Neumann ratio (von Neumann, 1941). Series were selected from 

those classified as “useful” which are stations where no more than 1 test rejects 

the null hypothesis that there is no discontinuity at the 1% level.  
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The stations used to calculate each of the threshold variables are shown in Figure 9.  

The list of relevant stations was obtained after the removal of a number of stations 

were identified which on inspection of metadata were not typical of the climate of the 

region.  In order to obtain coverage at the same resolution as that for the CRU TS 2.0 

series the threshold exceedence data were interpolated onto the same 0.5° by 0.5° grid 

using an inverse distance weighted interpolation algorithm (NCAR, 2006). 

 

Figure 9: The selection of 113 stations from the European Climate Assessment & 
Dataset used to calculate daily threshold variables. 

 

 

4 METHOD FOR DETERMINING THE FOOTPRINT CLIMATIC ZONES 
(FCZs) 
 

Each of the variables listed in Table 6 was derived from the relevant data source at 

the same 0.5° by 0.5° resolution.  Maps of each of these input variables are shown in 

Appendix 2.  The derivation of climatic zones was then undertaken using a two-stage 

procedure.  Given that a number of the variables were likely to be correlated, 

principal components analysis was initially undertaken to reduce the dimensionality 

of the data.  A cluster analysis was then performed on the retained components to 

derive the final regions. 

 

The principal components analysis was undertaken using all 8 variables which were 

first standardised due there being a range of different units.  Due to the likelihood of 
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correlation between the variables, an oblique rotation solution was undertaken to 

obtain better identification of components (Field, 2005).  The choice of how many 

principal components or factors should be retained is an important part of the 

procedure and may be determined using a number of objective criteria.  One of the 

most common methods is to use a scree plot of eigenvalues (Figure 10) for each of 

the factors and to identify a point of inflexion which may be used to discard 

redundant factors.  Alternatively, Kaiser (1960) recommends retaining only factors 

with eigenvalues greater than 1 whilst Jolliffe (1972, 1986) suggests a more relaxed 

criterion of retaining factors whose eigenvalues are more than 0.7.  In the present 

analysis, the scree plot suggests the retention of three components whilst a similar 

judgement is obtained from using the component eigenvalues, with the third and 

fourth factors having eigenvalues of 1.2 and 0.4, respectively.  The selection of three 

factors is consistent on all the three rules and the three first factors explain 81.7% of 

the variability. 

 

Figure 10: Scree plot indicating the eigenvalues for each of the components derived 
from the principal components analysis. 

 

The first principal component (PC1) appears to represent a general distribution, 

exhibiting properties of the observed distribution of rainfall with the largest positive 

scores along western coasts and high altitude areas such as the Alps (Figure 11a).  

The loadings of each variable on each of the factors shown in Table 2 indicate that 

this reflects the distribution of the mean rainfall variables and rain daily occurrence 

most strongly but also the distribution of extremes, particularly SPR_20 (Table 6).  

The second principal component (PC2) is clearly related to the temperature variables, 

with negative loadings observed over northern Europe and also over mountainous 
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areas, with increasing positive loadings over southern Europe (Figure 11b).  The final 

principal component (PC3) is also a rainfall signal, but both the loadings shown in 

Table 7 and the spatial distribution (Figure 11c) indicate that this component relates 

to the distribution of spring rainfall, particularly extremes. 
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Figure 11: Loadings of a) Principal Component #1, b) Principal Component #2 and c) 
Principal Component #3 derived from the variables listed in Table 6.  

Note that for Figure 11a, a contour interval of 1 is used for positive loadings, but 0.5 for 

negative loadings. 

 

 Principal Component 

 1 2 3 
SPR_TMP 0.14 0.93 -0.17 

AUT_TMP 0.38 0.84 -0.29 

WIN_PRE 0.82 -0.22 -0.48 

ANN_PRE 0.84 -0.40 -0.22 

SPR_2 0.58 -0.51 0.41 

SPR_20 0.78 0.23 0.51 

SPR_50 0.54 0.47 0.58 

AUT_20 0.81 -0.76 -0.29 

Table 7: Loadings of each variable on each of the retained factors. (See Table 6 for the 
explanation of the factors) 

 

Cluster analysis was performed using the scores on each of the three retained 

components.  A non-hierarchical method was considered most appropriate as this 

avoids a significant problem associated with hierarchical methods.  This latter group 

of methods works by iteratively constructing a hierarchy of sets of groups which are 

merged, in pairs, from previous collections of groups based on some distance 

measure in k-dimensional space.  However, they offer no mechanism by which 

vectors given membership to an inappropriate group at an early stage may be 

reallocated to a more appropriate group and so errors made during early iterations are 

propagated throughout the clustering procedure (Wilks, 2006).  
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The most commonly used non-hierarchical method is k-means clustering which, as 

with hierarchical methods, is based on distance measures but begins either by a 

random partition into the specified number of k groups or from an initial selection of 

k seed points with cluster membership decided by closeness to seeds (Wilks, 2006).  

The centroids of the initial clusters are computed and group memberships are 

reallocated on the basis of proximity to the cluster centroids.  The algorithm is 

iterated until each data vector is closest to its group centroid i.e. no further 

reallocations of membership are made. 

 

The most significant disadvantage of k-means clustering is that the number of clusters 

k must be predetermined before commencing the procedure.  It is therefore important 

to try k-means with a range of initial values of k.  The range of possible values was 

constrained in this case by the need to obtain a classification that adequately 

identified regions that were clearly different in terms of their climate and not over-

simplify the European region, whilst maintaining a number of zones that would be 

practical in terms of future modelling demands.  The range of solutions was therefore 

examined for between 12 and 18 climate zonations.  At the lower end of this range 

regions were produced which were extensive and might have encompassed too large 

a range of climatic conditions.  However, at the upper end of this range, the clustering 

procedure created new classifications from some of the smaller zones which occur in 

the wettest areas whilst also producing less spatially continuous regions. Hossell et al. 

(2003) identified a similar feature with a classification of Britain which produced 

small fragmented classes in upland regions  The solution provided when k=16 was 

considered optimal as it produced regions which had a physically plausible 

mechanism and was also realistic in terms of subsequent modelling workloads within 

the scope of the project. 

 

5 CLIMATE ZONATION  
 

The final zonation identified by the cluster analysis is shown in Figure 12, whilst a 

brief description of the climate, and member states where each may be found, is 

provided in Table 8.  Only zone 5 does not include any of the present member states 

of the European Union.  The distribution of zones is physically plausible, with the 

influence of temperature producing a north-south zonation, particularly in the drier 

continental interior.  The precipitation variables are also important in producing types 

which are found on western coasts but also in terms of topographically complex areas 
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where extreme events are a significant factor such as the UK, western Scandinavia 

and the Alps. Hence, although the main basis of derivation of the zones was climatic 

factors influencing the environmental fate pesticides, the zonation also reflects 

existing knowledge in the distribution of climates throughout Europe.  

 

It is possible to summarise the zonation into 6 broad categories which reflect the 

influences of the input variables.   

• “Atlantic” climates (zones 7, 11, 12 and 13) with high annual and winter 

precipitation totals and generally more frequent extremes in autumn than in 

spring. 

• “Temperate” climates with more moderate precipitation and fewer extremes.  

The two zones, 2 and 16 may be distinguished from each other on the basis of 

the latter being cooler and slightly wetter. 

• “Northern” climates (zones 4 and 10) are characterised by drier conditions 

and lower temperatures with temperature being the important factor in 

separating the member zones.  

• “Continental” climates (zones 5, 14 and 15) which are all warm interior 

climates and which tend to be subdivided on the basis of the precipitation 

threshold variables.    

• “Mediterranean” climates (zones 1, 8 and 9) are all warm with low to 

moderate mean precipitation but relatively more frequent extremes.  The 

northern Mediterranean zone (zone 1) may be distinguished from the other 

zones by distinct temperature and rainfall climatologies.  

• “Alpine” climates (zones 3 and 6) are characterised by relatively frequent 

extreme precipitation events and are subdivided on the basis of temperature 

and mean precipitation. 

 

Summary variable and principal component statistics were calculated for each of the 

zones. Table 9 shows the mean statistics for each of the input variables for each zone 

and offers an insight into the differentiation between the regions.  The merging of 

zones 7 and 12 for example was considered, but these are clearly differentiated in 

terms of the magnitude and seasonality of extreme precipitation events.  In order to 

give an indication of intra-class variability, Table 10 shows the standard deviations of 

each variable for each zone.  Analysis of these figures with the spatial distribution of 

principal component scores indicates that there is greater variability within some 

zones than others and that this tends to be greatest within the smaller wet zones which 
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are more loosely clustered.  The calculation of the co-efficient of variation (not 

shown) indicates that there is most variability for mean precipitation within zones 5, 8 

and 11 whilst for temperature the standard deviations indicate large intra-zone 

variability in zones 6 and 16.  One of the zones which might have been expected to 

have been subdivided on the basis of prior climate knowledge was the temperate zone 

2, however this has relatively low intra-zone variability when compared with the 

other zones.  Any undertaking to create further zones would require careful 

consideration to establish the objective criteria on which this might be based. 

 

 

Figure 12:  Final classification of the European region into 16 climatic zones. 
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Footprint 
Climatic Zone  

Description Member countries 

1 North Mediterranean climate, warm and moderate 
precipitation. 

France,  Germany, Italy, Slovenia, 
Spain (Albania, Bosnia & Herzegovina, 
Croatia, FYROM , Serbia, Switzerland) 

2  Temperate maritime climate. Belgium, Denmark, France, 
Germany, Lithuania, Luxembourg, 
Poland, UK (Russia) 

3 Sub-Alpine continental climate, warm, moderate rainfall 
but low winter rainfall, moderate frequency of extremes. 

Austria, Germany, Hungary, Italy, 
Slovenia (Croatia, Bosnia &  
Herzegovina) 

4 North European and continental climate, cool and dry. Finland, Estonia, Latvia, Lithuania, 
Poland, Sweden (Belarus, Russia) 

5 Continental climate, warm and dry. (Armenia, Azerbaijan, Georgia, Russia, 
Turkey) 

6 Alpine climate, cool and wet, relatively more extremes. Austria, France, Italy,  Slovenia 
(Bosnia &   Herzegovina, Croatia, 
Switzerland) 

7 Modified upland temperate maritime climate, more 
frequent extremes. 

UK (Norway) 

8 Mediterranean climate, with more extreme rainfall. Italy, Greece, Malta, Spain (Albania, 
Bulgaria, FYROM, Turkey) 

9 Mediterranean climate, warmer, lower rainfall with more 
dry days but higher winter rainfall. 

Cyprus, Greece, Portugal, Spain 
(Turkey) 

10 North European climate, cold and dry. Finland, Sweden, (Norway, Russia) 

11 Modified temperate maritime climate, warmer and 
wetter but fewer wet spring days. 

France, Portugal, Spain, UK 

12 Very, wet, mountainous maritime climates, more 
frequent extremes. 

UK (Norway) 

13 Wet, maritime climates, on exposed western coasts, 
more frequent extremes. 

Ireland, UK (Norway) 

14 Continental climate, warm and dry with moderate 
frequency of extremes. 

Austria, Czech Republic, Germany, 
Hungary, Poland, Slovak Republic 
(Bulgaria, Croatia, Moldova, Romania, 
Serbia, Ukraine) 

15 Continental climate, warm and dry, but more frequent 
wet days. 

Czech Republic, Germany, Hungary, 
Poland, Slovak Republic, (Belarus, 
Bulgaria, FYROM, Romania, Serbia,) 
Ukraine)  

16 Modified temperate maritime climate, cool with 
moderate precipitation. 

Ireland, Sweden, UK (Norway) 

 

Table 8: Summary description and member states for each of the 16 regions identified by the cluster analysis. 
Member countries that are in the European Union are shown in bold type.  

FYROM : Former Yugoslav Republic of Macedonia 
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 SPR_TMP  
(°C) 

AUT_TMP 
(°C) 

WIN_PRE 
(mm) 

ANN_PRE 
(mm) 

SPR_2 SPR_20 SPR_50 AUT_20 PC1 PC2 PC3 n 

1 13.4 11.7 485.3 935.9 609.6 51.0 2.2 65.5 0.641 0.546 1.298 261 
2 11.5 9.8 368.3 733.3 649.1 30.8 1.1 41.8 -0.093 0.518 -0.434 465 
3 11.9 8.8 392.0 994.6 744.7 73.0 3.6 60.6 0.022 -0.204 3.479 83 
4 10.2 4.6 259.4 615.5 538.3 24.1 1.0 28.9 -0.443 -0.307 -0.421 1020 
5 14.4 9.8 247.9 515.7 382.5 23.9 1.1 31.8 -0.357 0.598 -0.326 688 
6 5.9 4.8 765.1 1694.9 730.1 65.1 2.5 63.7 1.940 -1.135 1.967 50 
7 9.6 8.8 835.2 1411.2 779.0 57.5 3.0 145.4 2.978 -0.647 2.399 32 
8 16.1 15.2 420.9 642.2 453.2 36.7 1.9 67.3 0.507 1.153 0.668 316 
9 17.8 17.0 478.6 614.1 317.7 24.4 1.1 55.4 0.713 1.706 -0.578 280 
10 4.8 0.5 246.8 567.8 525.9 21.4 0.7 28.4 -0.380 -1.421 -0.440 992 
11 13.0 13.0 605.7 942.0 549.0 34.3 0.8 62.3 1.146 0.995 -0.779 147 
12 7.4 6.2 1408.8 2364.6 789.5 38.9 0.8 210.0 6.621 -0.813 -0.807 28 
13 7.3 6.1 877.3 1499.7 744.3 33.5 0.9 105.6 2.870 -0.493 -0.755 169 
14 13.4 9.3 244.8 644.1 611.4 47.4 2.4 37.4 -0.685 0.305 1.578 319 
15 13.3 8.0 243.2 589.1 550.6 34.0 1.7 33.8 -0.597 0.278 0.488 743 
16 6.2 4.1 512.5 959.1 674.7 28.3 0.7 69.0 1.015 -0.757 -0.746 216 

Table 9: Mean climate statistics for grid cells within each of the climatic zones.  PC1, PC2 and PC3 are the mean scores on the 3 principal components. 

The total number of grid cells belonging to each zone is denoted by n and total n=5809. 

A description of the various variables can be found in Table 6 
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 SPR_TMP  
(°C) 

AUT_TMP 
(°C) 

WIN_PRE 
(mm) 

ANN_PRE 
(mm) 

SPR_2 SPR_20 SPR_50 AUT_20 PC1 PC2 PC3 

1 2.2 2.4 96.3 176.0 79.9 6.9 0.75 10.3 0.44 0.52 0.86 
2 1.0 1.3 73.0 101.9 50.2 4.3 0.35 12.3 0.39 0.31 0.45 
3 2.5 1.9 107.1 242.1 101.5 13.9 1.00 12.4 0.60 0.60 1.28 
4 1.5 1.6 26.0 51.6 36.9 3.6 0.33 4.2 0.14 0.37 0.43 
5 2.9 2.9 119.0 220.0 57.8 4.2 0.42 9.2 0.58 0.67 0.53 
6 3.4 2.6 112.4 242.9 53.9 8.7 0.54 4.6 0.57 0.71 0.72 
7 1.5 2.4 204.9 288.9 80.5 13.5 1.04 51.4 1.01 0.77 1.64 
8 1.8 2.3 134.8 170.1 57.3 5.5 0.43 23.4 0.72 0.52 0.57 
9 2.1 2.4 109.6 114.1 79.7 5.2 0.49 18.8 0.53 0.50 0.51 
10 2.0 1.7 51.8 80.1 37.6 4.2 0.28 9.0 0.25 0.47 0.43 
11 1.7 1.7 190.3 251.5 67.7 7.4 0.38 13.6 0.78 0.42 0.48 
12 1.1 1.4 270.7 441.7 79.3 3.1 0.49 67.6 1.16 0.49 0.62 
13 2.3 2.9 156.4 255.0 74.4 6.8 0.32 43.5 0.87 0.74 0.80 
14 2.0 1.7 46.7 112.8 48.4 5.0 0.61 6.5 0.29 0.47 0.78 
15 1.3 1.9 34.2 78.8 55.5 5.4 0.43 5.1 0.19 0.35 0.45 
16 3.5 4.2 135.7 183.7 60.8 6.6 0.32 26.0 0.56 1.05 0.87 

Table 10: As for Table 4 but standard deviations of each variable for grid cells within each of the FOOTPRINT climatic zones. 

 

 



FOOTPRINT deliverable DL9   

- Page 43 -  

6 SELECTION OF REPRESENTATIVE CLIMATE DATA 
 

The final stage of the classification procedure was to derive typical climate series for 

a selection of variables that typify each region.  An objective method for determining 

the location was developed using each grid cell’s score on each of the 3 retained 

principal components.  For each climate region, 3D co-ordinates of the cluster 

centroids were obtained and for each grid cell within the region the deviation of the 3 

PC scores was obtained for each of these dimensions.  The mean of these deviations 

were then plotted with the location of possible stations overlaid.  A visual inspection 

of candidate stations enables a sample station to be derived based upon the lowest 

possible mean score deviation.  Figure 3 shows a “fictional” example of a possible 

region with candidate stations for example series.  In this case, station 2 has the 

lowest mean score deviation and would be most appropriate for the extraction of the 

required climate variables.  Where stations that were used in the initial analysis did 

not coincide with the area of the lowest mean score deviation, additional candidate 

series were identified from the ECA dataset.  The full list of climatic variables 

extracted to represent each climatic region and their source is listed in Table 11. 

These were selected on the basis of the environmental fate models which will be used 

in the future within FOOTPRINT (see section 2). 

 

 
 

Figure 3: An objective method for the selection of regional climate series based on 
mean score deviation on the 3 retained principal components.   

Possible station locations are identified by stations 1 to 6. 
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Variable Source 

Precipitation ECA 

Maximum Temperature ECA 

Minimum Temperature ECA 

Mean Temperature ECA 

Potential Evapotranspiration MARS 

Wind Speed MARS 

Solar Radiation MARS 

 

Table 11: Extracted daily series of climate variables representative of each of the 16 
climatic regions. 

 

Each of the variables is to be provided at a daily resolution covering a period of 

approximately 20 years.  Complete datasets for each of these variables for the 16 

climate zones will be provided in the final report of WP2 along with summary 

statistics of each series.  

 

 

7 CONCLUSIONS AND PERSPECTIVES 
 

A three-stage process was used to derive a climatic classification of Europe which 

reflects the environmental fate of pesticides.  Climatic variables influencing the fate 

of pesticides in the environment were first identified through the undertaking of 

modelling for various soils, pesticides, application dates and climatic series.  

Climatologies of the 8 selected variables were extracted from available data sources 

for the 1961-1990 period and used to define the climatic regions. In order to reduce 

the dimensionality of the data given the likely correlation between several of the input 

variables a dimension reduction procedure was performed using principal 

components analysis which resulted in the retention of 3 factors.  These factors were 

then used as variables in a cluster analysis (k-means) which objectively created 16  

groups of grid cells with similar characteristics.  The final solution produced 16 

regions (the ‘FOOTPRINT climatic zones’) which is a compromise between 

producing a detailed classification and the need for a manageable number of regions 

for subsequent modelling work.  The resulting regions are physically plausible in 

terms of the input variables used in the analysis and in terms of the physical 

mechanisms which underpin the climate of Europe.  A simple method was 

subsequently outlined for the objective identification of representative climate series 

for each of the 16 zones. 
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The final zones produced by this objective procedure range from 28 grid cells in size 

to 1020 and it would be possible given the knowledge of local climates to further 

subdivide zones into sub-classes.  This again might be achieved objectively by 

repeating the cluster analysis on a class by class basis as required.  However, the 

purpose of this study was not to produce a detailed climatic classification of Europe, 

but to produce a manageable classification of practical use to pesticide fate modellers.  

In this regard, a reasonable compromise has been achieved between these two 

outcomes.  This work provides the means for distinct climatological zones to be 

modelled in terms of pesticide fate and forms a considerable advance on previous 

work.  In future, the availability of a gridded daily climatology for Europe provided 

by the EU-funded ENSEMBLES project (ENSEMBLES, 2006) offers the potential to 

produce a more detailed examination across Europe, providing the potential to apply 

models on a more local scale. 
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9 APPENDIX 1: SENSITIVITY ANALYSIS RAINFALL TIME SERIES GENERATION 
 

The sensitivity datasets were split into four cases each designed to represent changes in one of 

four characteristics of the rainfall: the annual total, seasonality, proportion of dry days and 

skewness.  A set of target statistics were developed for each characteristic and for each 

variation step. These are referred to as target statistics as they take the place of observed 

statistics in the fitting procedure. In each case, the target properties were derived by small 

changes to the reference statistics of the relevant raingauge. This shown, for example, for 

Oxford in Figure A1. 
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Figure A1.  Observed rainfall properties and specification of sensitivity time series.  

a) Mean daily rainfall; b) Seasonality of daily rainfall; c) Proportion of dry days; d) Skewness of daily rainfall 
 

 

9.1 Change in annual rainfall 
 

To evaluate changes in annual totals, each observed dataset was analysed to obtain a monthly 

timeseries of mean daily rainfall amount. This was then analysed to determine the minimum, 

maximum, mean and standard deviation of calendar month estimates of mean daily rainfall 

amounts. These are shown as black (and dashed) curves in Figure A1(a) for the Oxford 

raingauge.  The target climatic sensitivities were then calculated as µ ± σ (the mean 

plus/minus one standard deviation) – this range was then split into 11 equal increments 

(Figure A1(a) coloured curves).  In this way the mean climatology should vary by an amount 
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equivalent to the observed variation in monthly rainfall amounts.  The variance statistic was 

also changed so as to retain a constant coefficient of variation.  All other observed statistics 

were kept unchanged.  Such an approach means that the greatest variation in rainfall amounts 

occurs in months with the highest rainfall totals. 

 

This procedure was followed for the Zaragosa raingauge with only slight modification. At 

Zaragosa the standard deviation of mean daily rainfall amounts is higher than the mean for 4 

months of the year. The procedure described consequently resulted in negative target values 

of mean daily rainfall for those months. To solve this, a minimum value of 0.1 mm day-1 was 

imposed for the target values at this raingauge. Figure A2 shows the target distributions 

resulting from this.  
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Figure A2.  Target mean daily rainfall statistics for Zaragosa for the annual rainfall total 
sensitivity test showing the effect of a 0.1 mm minimum threshold 

 

 

9.2 Change in rainfall seasonality 
 

Seasonality was characterised for each year in the observed datasets, Sy, by considering the 

similarity of each year to the overall average seasonality:  
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where xiy is the average daily rainfall in month i of year y, yx  is the average daily rainfall for 

year y, ix  is the average daily rainfall for month i in the entire dataset, x  is the average daily 

rainfall in the entire dataset and 2
ixs
 
is the inter-monthly sample variance of ‘the average daily 

rainfall for each calendar month’.  The mean and standard deviation of the yearly seasonality 

series were then evaluated and used to define 11 equal increments for the range µ ± σ (the 

mean plus/minus one standard deviation).  These are shown in Figure A1(b) for the Oxford 

raingauge.  The variance statistic was also changed to retain a constant coefficient of 

variation.  All other observed statistics were kept unchanged.  

 

The mean value of the annual time series of observed seasonality values estimated in this way 

is expected to be approximately one. However, for the Zaragoza raingauge the 12 complete 

annual records provided an estimate of mean seasonality of only 0.7. Therefore it was 

assumed that the 12 complete years were not a representative sample from the 42 year dataset. 

Instead a mean seasonality of 1.0 and a standard deviation of seasonality of 1.0 were 

assumed. The seasonality standard deviations for Oxford is 1.5, so this value lies within the 

valid range but may overestimate the variability in this region. 

 

9.3 Change in proportion of dry days (pdry) 
 

The pdry target case was generated in a way similar to that of the annual totals. The monthly 

time series of estimates of pdry were evaluated for each raingauge. These were then analysed 

to determine the minimum, maximum, mean and standard deviation of calendar month 

estimates of pdry. These are shown as black (and dashed) curves in Figure A1(c) for Oxford.  

The target climatic sensitivities of pdry were then calculated as 11 equal increments over the 

range µ±σ but allowing for the likely simulation bias in this statistic (e.g. Figure A1(c) 

coloured curves).  All other observed statistics were kept unchanged.  

 

9.4 Change in skewness coefficient 
 

Monthly time series of estimates of the skewness coefficient were evaluated. These were 

analysed to determine the minimum, maximum, mean and standard deviation of calendar 

month estimates of skew. These are shown as black (and dashed) curves in Figure A1(d) for  

Oxford.  This statistic is biased considerably by the short length of the observed series and 

therefore the mean is considerably different from that calculated for the whole series (skew in 

Figure A1(d)).  Further, this statistic is highly noisy and it is unlikely that the high values 

correspond to the true skew of the population.  For all raingauges, the target climatic 
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sensitivities of skew were calculated as being 11 equal increments about the whole mean with 

a variation range with the same coefficient of variation of the monthly estimates (Figure 

A1(d) coloured curves).  All other observed statistics were kept unchanged.  

 

9.5 Model fitting and simulation 
 

RainSim was fitted to the five statistics of each of the 11 equal increments for each of the four 

sensitivity cases for each raingauge. In each case, the model was used to generate a synthetic 

100-year time series.  The statistics of the resulting time series were analysed in a manner 

equivalent to the original observed time series.  Since this represents 880 annual cycles of 

statistics, only a subset of this data is presented. 
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Figure A3. For Oxford, the five statistics for the 11 simulations in the annual totals sensitivity study 
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a)   b)

c)   d)
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Figure A4.  For the Oxford raingauge, the means, proportion of dry days and skewness as most relevant 

for all four sensitivity studies (omitting fixed statistics and the variance).  
a) Annual totals; b) Seasonality; c) Proportion of dry days; d) Skewness 
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Figure A5.  For the Zaragosa raingauge, the means, proportion of dry days and skewness as most 
relevant for all four sensitivity studies 

a) Annual totals; b) Seasonality; c) Proportion of dry days; d) Skewness 
b)  

  

Figure A3 shows the five statistics for the 11 simulations in the annual totals sensitivity study 

for Oxford and Figure A4 shows the means, proportion of dry days and skewness as most 

relevant for all four sensitivity studies (omitting fixed statistics and the variance) for Oxford.  

Both of these figures show data that is affected by both model approximations and by 



FOOTPRINT deliverable DL9 

- Page 55 - 

stochastic variation.  Variation in fixed statistics is considered reasonable given the stochastic 

variation in each of the statistics. Figure A5 shows the most relevant varying statistics arising 

from the Zaragosa raingauge,  

 

 

9.6 Analysis of simulated datasets 
 

Whilst the results presented in Figures A4 and A5 are a subset of that generated by the 

analysis of the simulated series, an analysis of all of the results reached a set of conclusions 

that are summarised here.  The target statistics and their spreads were generally well 

reproduced by the simulations though the simulations do exhibit considerable stochastic 

variation as is expected. In particular, correlation and skewness statistics were found to be 

highly noisy but to be reasonably centred on the target values with the exceptions noted 

below. 

 

For the case of varying 

• annual total rainfall:  it was noted that the Pdry statistic was sometimes simulated 

biased high and the skewness sometimes low.   

• seasonality:  all simulations matched the target statistics well. 

• pdry:  it was noted that a good spread of pdry statistics was obtained for Oxford but 

not for Zaragosa. The combination of statistics required by the sensitivity analysis could not 

be generated for this raingauge; instead a narrower range of pdry variation was generated.   

• skew: high skewness coefficients cannot generally be matched in the simulations. All 

skewness statistics were found to be highly noisy and to generally reflect an increase in the 

skew.  Variance was also found to increase with skew. 
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10 APPENDIX 2: SUPPORTING MAPS 
 

 

 
Figure A6: Mean April-June temperature (SPR_TMP) derived from the CRU TS 2.0 data set. 

 

 
Figure A7: Mean September-November temperature (AUT_TMP) derived from the CRU TS  2.0 

data set. 
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Figure A8: Mean October-March precipitation (WIN_PRE) derived from the CRU TS  2.0 data set. 

 

 
Figure A9: Mean annual precipitation (ANN_PRE) derived from the CRU TS  2.0 data set. 
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Figure A10: Frequency of daily precipitation events (April-June) greater than 2mm (SPR_2) 

derived from the interpolated ECA&D stations. 

 

 

 
 

Figure A11: Frequency of daily precipitation events (April-June) greater than 20mm (SPR_20) 
derived from the interpolated ECA&D stations. 
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Figure A12: Frequency of daily precipitation events (April-June) greater than 50mm (SPR_50) 
derived from the interpolated ECA&D stations. 

 

 
Figure A13: Frequency of daily precipitation events (September-November) greater than 20mm 

(AUT_20) derived from the interpolated ECA&D stations. 

 

 


